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NONISOTHERMAL DEFORMATION OF A VISCOELASTIC MEDIUM
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One of the current problems of the mechanics of viscoelastic
media is the question of the effect of temperature. This problem
was first raised in the work of A. A. Aleksandrov and Yu. S,
Lazurkin who set forth the basic ideas of the principle of tempera-
ture ~-time superposition for isothermal loading at different tempera-
tures. A similar approach was adopted by Leaderman, Ferry,. and
others. Subsequently, in the work of Morland and Lee [1] the prin-
ciple was formally extended to the case of variable temperatures.

In this paper the problem of the nonisothermal deformation of a
viscoelastic medium is examined on the basis of the thermodynamics
of irreversible processes. Given sufficiently well justified assumptions
about the construction of the basic thermodynamic potential, this
approach inescapably leads to the conclusion that the state of the
viscoelastic medium depends not only on the current value of the
temperature field but also on its history of variation. The relations
obtained are similar to those proposed in {1], thus providing a
theoretico-physical basis for the above-mentioned principle and its
extension to the case of nonisothermal procésses.

§1. With the usual assumptions of continuum me-
chanics concerning the absence of changes in the
electromagnetic fields, chemical potentials, etc.,
taking into account only thermomechanical effects,
we can write the energy balance equation in the form
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Here u is the internal energy density, ql is the heat
flowrate vector, and gl is the metric tensor (a dot
above a function denotes the time derivative), Let s
be the entropy density, and f the free energy density,

f=u —"Ts (1.2)

Then Eq. (1.1) can be rewritten as
7 =cle; + ¢, —Ts —sT. (1.3)

The rate of increase of entropy for the system as
a whole can be represented as a sum :

S =8, 4+ gn’dV (1.4)
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Here Sg is the external entropy flux, and 7 is the in-

ternal entropy source density. Since
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where F is the surface bounding the volume V in
question, from (1.3) and (1.4) we get
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§2. An especially important role in the thermo-
dynamic analysis is played by the choice of the basic

system of parameters. All possible changes in the

viscoelastic medium are macroscopically mani-
fested in changes in at least one of the quantities o'},
&jj or T. Therefore as a complete system of param-
eters of state of an element of the medium we can
take

{o%, &5, T} (2.1)

We shall isolate from the total deformation a part
i—:i]I following instantaneously from changes in the ex-
ternal conditions. As experiments show, we may with
sufficient accuracy assume that it is perfectly elastic:

i (t) = Gy o + ady; (T — Ty). (2.2)

This, roughly speaking, is attributable to the fact
that the instantaneous strain is conditioned by changes
in the interatomic distances, i.e., has the same na-
ture as the small strains of ordinary low-molecular
materials. In this case the aftereffect is given by

Eg?) = 84 8%.). (23)
It is easy to observe that the system of parameters
{eg), eg), T} (2.4)

is equivalent to system (2.1) and may be taken as the
basic system.
Since f is a function of state, from (1.6) we obtain

-4 TR ) O i 9 Yoy
M _T[(ca_aa%) 8 + 1o 06(1_?) &) —

of . 4T

In accordance with the second law of thermody-
namics

>0, (2.6)

the equality applying only in the case of reversible
processes.

In analyzing the deformation processes we shall make use of the
ideas expounded in [2]. As distinct from the material investigated
in that study, a viscoelastic medium is characterized by several
types of reversible deformation processes. This is because for such
a medium reversible processes are possible at different rates of
change of the external conditions.

a) We shall assume that the external forces vary
"instantaneously,” i, e., in the course of an interval
of time so short that the aftereffect is unable to de-
velop. The temperature field is uniform and also
varies instantaneously, remaining uniform,

g5 =0, T ;=0.
Then from (2.5) we obtain

8 Ny (% + s) T, (2.7)
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Hence, thanks to the independence of 8(1) and T°, it
follows that

sl — 2L —o, (2.8)

g..l

aT +s5=0. (2.9)

In the case in question the viscoelastic medium
behaves as if it were perfectly elastic.
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b) Let all the external conditions vary quasi-
statically (at "infinitesimal” rates) for a uniform
temperature field. Then from (2.5)
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Solving the first equation of {2.11) for 8(1) and the
second for £{8) with account for the fact thal &f 8131 +

e{]) = &jj, we get the final expressions relating the
stress tensor with the total strain tensor. This case
of reversible and equilibrium viscoelastic deforma-
tion may be formally incorporated in the physically
nonlinear theory of elasticity.

¢) We shall assume, finally, that the external
forces vary instantaneously and the temperature field
quasi-statically, remaining uniform,

Sij(”' = O, T,i = O, T = 0
In this case from (2.5) we get

0= (% — a"’{l)> e, (2.12)
From this there again follows Eq. (2.8), whereas Eq.
(2.9) and the third of Eqs. (2.11) are no longer satis-
fied. Thus, (2.8) is valid for any reversible change
in the state of the viscoelastic medium. A reversible
process of at least one of the above~mentioned types
is realizable from any state; consequently, (2.8)
must also be valid for any state. As distinct from
(2.8), Eq. (2.9) and the third of Egs. (2.11) are not
valid for any state.

With this in mind, we may assert that in the
general case of viscoelastic deformation the expres-
sion for the entropy source density has the form

i = (o= )y — )T T e

We also note that from (2.8), by virtue of (2.2), it
directly follows that
F e, 6@, T)
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=f1 (&, T) + fa (e, T). (2.14)

The last equation is obviously valid at any point of
phase space.

§3. In accordance with the concepts of the thermo-
dynamics of irreversible processes [3], the thermo-
dynamic forces may be represented in the form of a
linear combination of fluxes. As may be seen from
(2.13), in the given case the role of thermodynamic
forces is played by

(0% — 8fy [ 0e:;%), (9f/0T + s), Ty

while the corresponding fluxes are the quantities
8(2) , T" and gl
Consequently, we can write

o a(:{;) — BYH@ 4 BT | quf + By “ * (3.1)
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We assume

Fo (6@, T) = AT 6@ + g, (1), (3.2)

(Essentially, this is the usual assumption about
the linearity of the rheological relations.)

If we assume that the material is isotropic, then
the last two terms in (3.1) are eliminated by virtue
of the Curie principle. Hence, using (2.14), we ob-
tain the following system of ordinary differential

equations:
— AT — pimmgay -+ BT, (3.3)

We shall write it in the usual form, solving for
the _components of the aftereffect strain rate tensor

Smn
82 4+ L (T) & = Ponijo¥ — QunT" 3.4)

The structure of L, P, and Q is easily determined
from the condition of isotropy. Henceforth we shall
be interested in the case

() = L () at any ¢, (3.5)
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We shall introduce the object Q(t) satisfying the
equation

with initial conditions
QF =86 at t=:0

(Q is often called the matrizant).
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Then the general solution of (3.4) may be written
in the form

8y (t) = Qif'elin (t = 0) +

Tty T) [Ponieis® (1) — Qun T (W] dv,  (3.7)
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where K1 (t 7) is the so-called Cauchy matrix (in
the given case a fourth~order tensor),

K3 (¢, v) = Qi (1) [Q" (1)1 (3.8)

From the assumed existence of a starting un-
stressed and undeformed state at t = 0 it follows that

e (¢ = 0) = 0. (3.9)

As a result, the relation between the stress tensor,

the total strain tensor and temperature has the form
€;; (t) = Gijklﬁkl(t) -+ Otéi]' (T — To) -+

pmnkldhl (17 an (3' 10)
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To determine the matrizant, we represent it in
the form of a multiplicative integral:
t
QI (1) = 5 (8185 — Lisdt).
§ .
When condition (3.5) is satisfied, (3.11) reduces to
a tensor of the form

(3.11)
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Then, by virtue of (3.8),
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we finally get
t
K" (¢, v) = exp (— SLZ’}" (6) ). (3.15)

§4. Let us consider the uniform strain in some simple stress state,
e.g., that of a cylindrical test piece in uniaxial tension. Then (3,17)
becomes

e(l) = -— + o (T()—To)+

+ Stexp <—§ k(8) 26 )[”g)
< Q r

Hence for isothermal loading we have

s(t)— BT (‘I,'):' dr. (4.1)
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In (4.2) the temperature enters as a parameter, It is easy to see,
however, that in the general case the deformation of a viscoelastic
medium can not depend on the value of the temperature only at the
current instant t (or only at the instant 7). In fact, let us consider
the process illustrated in Fig. 1,

s(t)= {c" at t<lh,
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For real viscoelastic materials (e.g., high polymers) the after-
effect is very sensitive to changes in temperature, since its internal
mechanism is intimately connected with the thermal motion of the
molecules. Therefore an increase in temperature on the interval
(13, t3) has an effect on the strain at any moment t > t3. However,
if we assume that (4.2) is also valid for nonisothermal deformation
(when k = k(T), where T = T(t) or T = T(7)), then these changes
in temperature will have no effect on the state of the material at
time t > tg,

Apparently, these considerations served as a basis for the exten-
sion of an expression of the type (4.2) to the nonisothermal case pro-
posed in [1]. From this extension there follows an equation similar
to (4.1), if we set 8 =0 in the latter,

We shall stress the following two points: 1) the rheological equa-
tion (4.1) was obtained above on the basis of a thermodynamic analy-
sis; 2) the term with the coefficient 8 in the integrand is of
considerable significance. This follows from the results of the classic
experiments of Meyer and Feiry, Huth and coworkers, etc. (see, for
example, [4]).

We recall that in these experiments the variation in stress was
investigated for a specimen with fixed strain upon variation of tem-
perature. A typical curve obtained in such experiments on elastomers
has the form shown in Fig. 2. At a value of T smaller than a certain
characteristic value for the given elastomer and a specified ¢ = const,
o decreases with increase in T (for ordinary materials this occurs at
any T). At a temperature greater than that indicated, o increases
with increase in T (almost linearly).

From (4.1) it follows that

o(t) = E e (t) — a (T(t)— T)) +
t
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Ty + §exp [_ Sk ®) de] BT (s) ds} dr,

where A = E/Ey. The last term in (4.3) takes into
account the relaxation effects, whose influence on
the above-mentioned experiments was reduced to a
minimum, This means that in these experiments the
nature of the stress-temperature relation is given by

c(t)zE{e(t)—oc(T— Ty) +

i t
_ : , “.
+ § oxp [ Slc ©) de] BT (1) dr} 4)

Hence it is clear that for a suitable choice of 8 =
= B(g, T), Eq. (4.1) describes the experimentally
established increase in stresses with increase in
temperature. However, if we set 8= 0 (in this case,
it should be stressed, (4.1) reduces to the expression
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proposed in [1]), then instead of (4.4) we get 2. A. A, Vakulenko, "Stress-strain relations in
inelastic media,” in: Studies in Elasticity and Plasti-
o) =Ele® —a(T =Tyl city, 1 [in Russian], Izd. LGU, 1961.

3. 8. R. de Groot and P. Mazur, Nonequilibrium
Thermodynamics [Russian translation], Izd. "Mir,"
1964,

4. L. R. G. Treloar, Physics of Rubber Elastic~
ity [Russian translation], Izd. inostr. lit,, 1953,

which for € = const gives the usual effect of decrease
in stress with increase in T.
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